matura 2009 maj. Jezyk angielski dla osób niesłyszących, matura 2009, arkusz I, poziom podstawowy. kierunki po maturze z matematyki i informatyki
Zadanie 1. (5 pkt) a) wiersz x: -3 3 3/2 wiersz f(x): -9 1 0 c) {-1,0,1,2,3,4} Zadanie 2. (3 pkt) m = 80, n = 60 Zadanie 3. (5 pkt) a) x należy (-nieskończoność, - 5/2) suma (1, + nieskończoność) b) Zbiorem wartości funkcji g jest (- nieskończoność, 8> c) b = 12, c = -10 Zadanie 4. (3 pkt) x = 3 do 54 Zadanie 5. (5 pkt) a) a = -3, b = -1, c = 0 b) W(x) = x(x-1)(x+4) Zadanie 6. (5 pkt) b) Wartość tego wyrażenia to 1/3. Zadanie 7. (6 pkt) a) a1 = -11, r = 2 b) ciąg jest geometryczny c) n = 6 Zadanie 8. (4 pkt) Obwód trapezu: 108 Zadanie 9. (4 pkt) A = (4, 2), długość przyprostokątnej to 2 pierwiastki z 5 Zadanie 10. (5 pkt) a) średnia arytmetyczna liczby błędów: 2 b) prawdopodobieństwo: 63/145 Zadanie 11. (5 pkt) a) 36 pierwiastków z 3 b) Objętość walca jest mniejsza niż 18 pierwiastków z 3 #matura #matematyka #okrąg #kąty #wpisaneTłumaczę jak rozwiązać zadanie 14 z matury podstawowej z matematyki z arkusza maturalnego CKE maj 2019Punkty D i E l Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej $f$. Wierzchołkiem tej paraboli jest punkt $W=(2,-4)$. Liczby $0$ i $4 $ to miejsca zerowe funkcji $f$.Zbiorem wartości funkcji $f$ jest przedział A. $(-\infty,0 \rangle$B. $\left\langle 0,4\right\rangle$C. $\langle-4,+\infty)$D. $\langle4,+\infty)$ Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej $f$. Wierzchołkiem tej paraboli jest punkt $W=(2,-4)$. Liczby $0$ i $4 $ to miejsca zerowe funkcji $f$.Największa wartość funkcji $f$ w przedziale $\left\langle 1,4\right\rangle$ jest równaA. $-3$B. $-4$C. $4$D. $0$ Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej $f$. Wierzchołkiem tej paraboli jest punkt $W=(2,-4)$. Liczby $0$ i $4 $ to miejsca zerowe funkcji $f$.Osią symetrii wykresu funkcji $f$ jest prosta o równaniuA. $y=-4$B. $x=-4$C. $y=2$D. $x=2$ W ciągu arytmetycznym $(a_n)$, określonym dla $n\geqslant1$, dane są dwa wyrazy: $a_1=7$ i $a_8=-49$. Suma ośmiu początkowych wyrazów tego ciągu jest równaA. $-168$B. $-189$C. $-21$D. $-42$ Dany jest ciąg geometryczny $(a_n)$, określony dla $n\geqslant1$. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek $\frac{a_5}{a_3}=\frac{1}{9}$. Iloraz tego ciągu jest równyA. $\frac{1}{3}$B. $\frac{1}{\sqrt{3}}$C. $3$D. $\sqrt{3}$ Sinus kąta ostrego $\alpha$ jest równy $\frac{4}{5}$. Wtedy A. $\cos\alpha=\frac{5}{4}$B. $\cos\alpha=\frac{1}{5}$C. $\cos\alpha=\frac{9}{25}$D. $\cos\alpha=\frac{3}{5}$ Punkty $D$ i $E$ leżą na okręgu opisanym na trójkącie równobocznym $ABC$ (zobacz rysunek). Odcinek $CD$ jest średnicą tego okręgu. Kąt wpisany $DEB$ ma miarę $\alpha$.ZatemA. $\alpha=30^\circ$B. $\alpha45^\circ$D. $\alpha=45^\circ$ Matura maj 2009 - matematyka -13 maja 2009 r. Matematyka - arkusz z poziomu podstawowego; Matematyka - arkusz z poziomu rozszerzonego